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Fig. 1. Overview of our dataset.

ABSTRACT

In underwater environments, the reflected ultrasonic waves
from objects generally provide more than just information about
their color and shape for object recognition. Previous studies have
overlooked the influence of object pose on these wave components.
It is crucial to investigate how these poses affect the reflected wave
components because object poses can vary widely and are often
unpredictable in real-world scenarios. In this work, we introduce a
novel dataset comprising reflected wave components collected from
objects made of various materials and observed from various angles.
We also show the preliminary evaluations on the performance of
machine learning-based material classification on object pose. Our
results indicate that the accuracy is consistently high (≥ 91%) for
known angles but significantly drops (< 60%) when dealing with
unknown angles in most cases. Based on these evaluations, we sug-
gest several directions for future research. Our dataset is available at
https://github.com/Nyamotaro/U2R.

Index Terms— material recognition, underwater acoustics, ul-
trasonics, acoustic sensing, robotics

1. INTRODUCTION

Understanding underwater conditions in oceans, rivers, and lakes is
crucial for ensuring the safety of vessel navigation and the integrity
of structures like submarine oil pipelines [1, 2]. It also plays a vi-
tal role in protecting the underwater environment. Recently, there
has been a growing focus on research aimed at addressing environ-
mental concerns [3, 4, 5, 6, 7, 8]. Some of these studies leverage
underwater robotic technologies to investigate aquatic waste, which
is a significant societal issue [4, 5, 6, 9].

Previous studies on underwater object recognition have primar-
ily relied on camera images [10, 11, 12, 13, 14, 15]. However, they
generally encountered limitations. RGB-D cameras are hindered by
turbidity and light variations while effectively capturing scene de-
tails [16]. Additionally, identifying materials based solely on color
and shape can be challenging [17, 18]. In contrast, some methods
have utilized acoustic cameras, offering advantages such as reduced
sensitivity to turbidity and light intensity [12, 19]. However, they
still face difficulties in material recognition because they depend on
shape characteristics [20]. It is worth noting that the underwater en-
vironment is highly variable, with turbidity and light intensity fluctu-
ating depending on the location. Furthermore, underwater waste can
encompass transparent objects with similar shapes but made from
different materials, such as plastic and glass products. These are im-
portant but difficult challenges to be solved. Using one-dimensional
data from reflected wave components during ultrasonic irradiation
allows us to go beyond color and shape. Sphere material classifi-
cation has been demonstrated using wave components in machine
learning models [21, 22].

Datasets are essential for achieving machine learning-based un-
derwater material recognition using one-dimensional information on
reflected wave components. There are still some limitations, al-
though undisclosed datasets collected exist [21, 22, 23]. First, the
number of material types is small. In practice, more various materi-
als exist in the real-world underwater environment. Second, the data
is only collected from spheres. The effect of object pose on reflected
waves can be ignored by targeting a sphere. However, the object’s
shape is varied and unknown in the real environment.

This paper proposes a novel dataset with reflected wave data
from flat plates constructed from nine different materials. This
dataset encompasses data gathered at four distinct frequencies un-



Table 1. Comparison to existing datasets.
Dataset Pub. UW Obj. Mat. Ang. Freq.
Kang [25] % % Plate 9 % MUX
Qing [21] % ! Sphere 3 % MUX
Dmitrieva [23] % ! Sphere 4 % MUX
Our dataset ! ! Plate 9 ! Single

der six varying angular conditions. We also show the preliminary
evaluations on machine learning-based material classification per-
formance using AutoGluon [24]. Based on these evaluations, we
suggest several directions for future research. Our primary contribu-
tions are summarized as follows:

• We provide the world-first underwater reflected wave dataset
resulting from ultrasonic irradiation at multiple frequencies
and incident angles.

• The experiments demonstrate that the object’s pose signifi-
cantly impacts the material classification accuracy.

• We discuss important research topics contributing to under-
water material recognition.

2. RELATED WORK

Table 1 compares our dataset with previous datasets. We introduce
the details and the differences with ours.

Kang et al. conducted research collecting reflected wave com-
ponents by exposing aerial objects to broadband ultrasonic waves
generated based on bat echolocation sounds [25]. Their dataset con-
sists of measurements taken from the object’s front at 12 different
distances and includes nine distinct materials, such as a blanket and
an iron plate. However, this dataset lacks information on reflected
waves corresponding to different object poses.

Qing et al. focused their efforts on gathering reflected wave
components from underwater objects exposed to three distinct
broadband pulse waves, ranging from 40 to 80 kHz, generated
based on dolphin clicks [21]. Their dataset comprises frontal mea-
surements conducted at a fixed distance for aluminum, brass, and
stainless steel. Notably, their dataset exclusively pertains to spheres,
where the effect of object pose is negligible, and does not encompass
reflected wave data for varying object poses.

Dmitrieva et al. collected reflected wave components from
underwater objects using broadband pulsed waves spanning 52 to
136 kHz [22, 23]. Their dataset includes data for aluminum, stain-
less steel, brass, and copper, acquired from the object’s front at
distances ranging from 1 to 3 m. Similar to [21] dataset, they fo-
cused on spheres with a two-layer structure and did not incorporate
reflected wave data for diverse object poses. It is worth highlighting
that all these mentioned datasets are currently undisclosed.

Our dataset uniquely captures reflected wave components for
various object poses achieved by adjusting the angle of flat plates
submerged in water. We targeted nine different materials and gath-
ered reflected wave components by irradiating objects with four dis-
tinct single-frequency ultrasound waves. Importantly, our dataset
is intended for public release upon publication, promoting trans-
parency and collaboration within the research community.
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Fig. 2. Measurement environment.

3. DATA COLLECTION

3.1. Overview

Our dataset comprises reflected wave data obtained at four distinct
frequencies and six different angular conditions, covering nine ma-
terials. Each condition includes data from ten separate trials. A
total of 2,160 waveform data are included in the dataset. Data col-
lection followed specific parameters, including a 625 kHz sampling
rate, a 0.2 kHz high-pass filter (HPF), and a 200 kHz low-pass filter
(LPF). In the following subsections, we will detail our data collec-
tion methodology.

3.2. Theoretical principles to be considered

Distance between the transmitter/receiver and the target object.
When measuring reflected wave signals, accounting for the distance
between the transmitter/receiver and the object is crucial, especially
in the near-field region. The near-field represents an area where the
wave phases are intricate, and the sound pressure distribution near
the transducer is complex [26]. Various equations have been defined
for calculating the near-field region [27]. We use the following equa-
tion to calculate the distance of the near-field in this work:

Lnear =
D2

λ
(1)

where Lnear represents the distance of the near-field (m), D stands
for the diameter of the transmitter’s aperture or the width of the
square plate (m), and λ corresponds to the wavelength (m). In our
work, we primarily focus on the near-field region from the target
object to the receiver, as the near-field region from the transmitter
is negligible. This equation allows us to determine the distance be-
tween the transmitter and receiver concerning the target object.
Signal transmission and reception. Our transmit signal is a sinu-
soidal waveform generated by an oscillator with a precisely chosen
pulse length of 0.3 ms and a 20 ms transmission interval. The 0.3 ms
pulse length ensures an integer number of cycles for each frequency
condition, serving our purposes optimally, while the 20ms interval
eliminates multipath effects. The transmitted signal for each fre-
quency condition includes 15 cycles for 50 kHz, 18 cycles for 60
kHz, 21 cycles for 70 kHz, and 24 cycles for 80 kHz. Received sig-
nals fall into two categories: direct wave and reflected wave signals.
Both are captured using a digital oscilloscope with a 625 kHz sam-
pling rate. To ensure data reliability, we apply filtering techniques,
including a 0.2 kHz high-pass filter (HPF) and a 200 kHz low-pass
filter (LPF). These filter settings have been rigorously validated for
effective noise removal.



3.3. Method

Devices. The measurement system in Figure 1 (left), consists of key
components: two underwater transducers (OST 2150, OKI Com-
Echoes), an oscillator (WF1948, NF), a power amplifier (HSA4011,
NF), a fixed attenuator (40 dB attenuation), a preamplifier (5307,
NF), a digital oscilloscope (DLM2054, YOKOGAWA), and a filter.
One transducer serves as the transmitter, and the other as the receiver.
The oscillator signal is amplified 20 times by a power amplifier, then
further amplified 10 times through a preamplifier with a fixed atten-
uator before reaching the digital oscilloscope. The received signal
goes through a 20x preamplification and is processed with a HPF at
0.2 kHz and a LPF at 200 kHz via a dedicated filter module before
being fed into the digital oscilloscope.
Environment. The measurements were conducted in an anechoic
tank at OKI Com-Echoes Co., Ltd. in Numazu City, Shizuoka,
Japan. The tank measured 5.0 m (L) × 2.5 m (W) × 3. m (H)
and used tap water at 14.6◦C as the medium. To ensure optimal con-
ditions, we set the receiver-to-object distance at 0.6 m using Equa-
tion (1) and the transmitter-to-receiver distance at 0.5 m. This re-
sulted in a 1.1 m distance between the transmitter and the target
object. This distance was chosen to minimize noise from the tank’s
dimensions. All three components (transmitter, receiver, and target
object) were positioned 1.2 m below the water surface using a ded-
icated jig. The target object was mounted on a device that allowed
precise rotation in 0.1◦ increments, ensuring precise control during
experiments.
Conditions. The measurement conditions are summarized in Ta-
ble 2. We used stainless steel, aluminum, glass, PET, natural rubber,
PE foam, brass, wood, and steel in Figure 1 (center). Each object
was a flat plate measuring 100 mm (L) × 100 mm (W) × 5.0 mm
(thickness), except for wood, which was 5.5 mm thick. To ensure
secure attachment to the jig, we added holes at the top edge of all ob-
jects and at the lower end, where weights were attached for natural
rubber and PE due to buoyancy issues. We explored four ultrasonic
frequency settings: 50 kHz, 60 kHz, 70 kHz, and 80 kHz. Addi-
tionally, we investigated six different incident angles for ultrasonic
waves on the object surface: 0◦, 2◦, 4◦, 6◦, 8◦, and 10◦. This re-
sulted in a total of 216 conditions, combining nine materials, four
frequencies, and six angles. Each of these 216 conditions was tested
in 10 separate trials, ensuring the collection of comprehensive and
reliable data.
Procedure. The data collection process adhered to the following
procedure:

1. All objects were immersed in the same water as the measure-
ment environment overnight.

2. The measurements were conducted in the following order:
stainless, aluminum, glass, PET, natural rubber, PE, brass,
wood, and steel. For each material, the measurements were
performed 10 times at each of the following conditions:

• Incident Angles: 0, 2, 4, 6, 8, and 10 (◦).

• Ultrasonic Frequencies: 50, 60, 70, and 80 (kHz).

Step 1 was undertaken because it was observed that when objects
were placed in water without this treatment, a layer of air could form
on the object’s surface. This air layer had a discernible impact on the
measurement data, highlighting the necessity of ensuring consistent
and accurate experimental conditions.

Table 2. Measurement conditions.
Mat. Freq. (kHz) Ang. (◦)

Stainless 50, 60, 70, 80 0, 2, 4, 6, 8, 10
Aluminum 50, 60, 70, 80 0, 2, 4, 6, 8, 10

Glass 50, 60, 70, 80 0, 2, 4, 6, 8, 10
PET 50, 60, 70, 80 0, 2, 4, 6, 8, 10

Natural rubber 50, 60, 70, 80 0, 2, 4, 6, 8, 10
PE 50, 60, 70, 80 0, 2, 4, 6, 8, 10

Brass 50, 60, 70, 80 0, 2, 4, 6, 8, 10
Wood 50, 60, 70, 80 0, 2, 4, 6, 8, 10
Steel 50, 60, 70, 80 0, 2, 4, 6, 8, 10
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Fig. 3. Stainless, 70 kHz and 0◦ condition.

4. MATERIAL CLASSIFICATION

4.1. Feature extraction

Figure 3(a) shows an example of the received signal waveform for
one trial, taken at 70 kHz and 0◦ for the stainless material. Subse-
quently, cross-correlation values were computed between the trans-
mitted and received signals, which facilitated the determination of
the required reflected wave component of the received signal. For
this analysis, it was found that the number of samples required was
231. However, to meet the condition necessary for the subsequent
Fourier transform, which mandates a power-of-two sample size, 256
samples were employed to extract the reflected wave components.
The Short-Time Fourier Transform (STFT) was then applied to these
extracted reflected wave components, with a Hann window chosen as
the window function. A window size of 1024 was utilized. The out-
come of this process was a spectrogram, where frequency and time
were represented on the vertical and horizontal axes, respectively,
and dB values were denoted by the color density. Figure 3(b) illus-
trates a spectrogram for stainless material at 70 kHz and 0◦. The dB
values extracted from the spectrogram served as high-dimensional
feature vectors for further analysis.

4.2. Results

The classification accuracy was evaluated after features were labeled
with material types to evaluate the effect of the angle on the accuracy.
AutoGluon [24] was employed as the evaluation tool, as detailed in
the study. The feature vectors obtained from the spectrogram data
were labeled with their corresponding material types. It is notewor-
thy that in this analysis, only models with a runtime of 120 s or less
were utilized. This runtime constraint was imposed to ensure the
efficiency of the model evaluation process while maintaining rea-
sonable computational demands.
Same angle conditions. The test conducted aimed to establish the
criteria for evaluating the impact of the angle on classification accu-



Table 3. Classification results in the same angle conditions.

Freq. Ang.
0◦ 2◦ 4◦ 6◦ 8◦ 10◦

50 kHz 1.0 0.89 0.93 0.89 0.93 1.0
60 kHz 1.0 1.0 1.0 1.0 1.0 1.0
70 kHz 1.0 1.0 0.89 1.0 1.0 0.93
80 kHz 1.0 1.0 0.96 1.0 1.0 0.96

Table 4. Classification results in the mixed angle conditions.
Freq. Acc.

50 kHz 0.92
60 kHz 0.96
70 kHz 0.94
80 kHz 0.91

racy. In this test, the data was split into training and test sets with
a ratio of 7:3. The split was executed in a manner that ensured the
proportion of each material label was consistent between the train-
ing and test data sets. The results of this evaluation, as presented in
Table 3, indicate that in the majority of cases, an accuracy of 100%
was attained. This suggests that the classification model performed
exceptionally well in correctly classifying the materials, reflecting
the high quality and reliability of the dataset and the effectiveness of
the classification process.
Mixed angle conditions. This test aimed to verify the classification
accuracy when using training data that encompassed all angular con-
ditions. Similar to the previous test, the data was divided into train-
ing and test sets in a 7:3 ratio, ensuring that the proportion of each
material label was consistent between the two sets. The outcomes,
as illustrated in Table 4, reveal that for all frequency conditions, the
classification model achieved an accuracy of 91% or greater. These
results indicate that data associated with trained angles could be ef-
fectively discriminated with a high degree of accuracy. This under-
scores the robustness of the classification model, especially when the
model is well-trained across various angular conditions.
Unknown angle conditions (Blind test). This test assessed classifi-
cation accuracy for data with unknown angular conditions. Training
data included five out of six angular conditions, while the unseen
test data represented the remaining condition. Results in Table 5
mostly showed accuracy below 60%, with a minimum of 11%. The
model struggled to classify materials accurately in unknown angular
conditions, often misclassifying them even within the same material
category. This highlights a significant challenge, underscoring the
need for further investigation in handling such scenarios.

4.3. Discussion

Firstly, the variances observed in the results under the same angle
conditions can be attributed to factors such as frequency-related sen-
sor characteristics and non-linear underwater wave phenomena. Re-
flected waves exhibit nonlinearity due to components like specular
and scattered reflections. Our research aims to model these phenom-
ena using physics-based machine learning techniques. Addressing
this challenge is a key objective for future work.

Secondly, high accuracy in classifying objects was achieved un-
der mixed angle conditions, demonstrating the model’s effectiveness
in familiar scenarios. However, a substantial drop in accuracy oc-
curred when dealing with unknown angles, highlighting the chal-
lenge posed by varying reflected wave components based on the ob-

Table 5. Classification results in the unknown angle conditions.

Freq. Unknown Ang.
0◦ 2◦ 4◦ 6◦ 8◦ 10◦

50 kHz 0.70 0.80 0.53 0.38 0.29 0.29
60 kHz 0.58 0.67 0.48 0.33 0.34 0.13
70 kHz 0.42 0.61 0.20 0.22 0.41 0.22
80 kHz 0.33 0.56 0.23 0.27 0.24 0.11

ject’s pose.
Accurate material classification heavily depends on having pose-

specific reflected wave data. Real-world environments present di-
verse and unknown object poses, necessitating the development of
accurate material recognition methods. We primarily focused on us-
ing amplitude information from single-frequency ultrasonic waves in
this study. Notably, reflected wave components contain phase differ-
ences in addition to amplitude. We suggest that combining and an-
alyzing data collected under multiple frequency conditions can pro-
vide valuable insights. These insights may help address challenges
related to object poses by leveraging domain knowledge about an-
gles and reflected wave components, offering a promising avenue
for future research.

Moreover, many studies have been tackling the challenge of poor
image quality underwater in image-based methods that capture scene
details like object positions [28, 29, 30]. In the future, we hope that
high-performance underwater material recognition methods will be
achieved by combining these advanced image-based techniques with
our research insight.

5. CONCLUSION

We introduced a novel dataset containing one-dimensional reflected
wave component data obtained by directing ultrasonic waves at
different incident angles toward underwater objects. The material
classification evaluation demonstrates high accuracy when the model
is trained on specific angles. However, accuracy drops significantly
when dealing with unknown angles, emphasizing the challenge
posed by object pose variations on reflected wave components.

The impact of object pose on reflected wave components is a
substantial challenge, especially in real-world scenarios with diverse
and unpredictable object orientations. The study suggests that fea-
ture extraction from data collected under different frequency condi-
tions can provide not only amplitude information but also valuable
insights like phase differences. Leveraging this broader informa-
tion as domain knowledge holds promise for addressing object-pose-
related issues and advancing the development of robust and accurate
material recognition methods. This research paves the way for ex-
citing possibilities in future studies within this field.
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